Surface plasmonics of Weyl semimetals
نویسندگان
چکیده
Smooth interfaces of topological systems are known to host massive surface states along with the topologically protected chiral one. We show that in Weyl semimetals these states, Fermi arc, strongly alter form Fermi-arc plasmon, Most saliently, they yield further collective plasmonic modes absent a conventional interfaces. The plasmon completely anisotropic as consequence underlying anisotropy model and expected have clear-cut experimental signature, e.g. electron-energy loss spectroscopy.
منابع مشابه
Photocurrents in Weyl semimetals
Ching-Kit Chan,1 Netanel H. Lindner,2 Gil Refael,3 and Patrick A. Lee1 1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 2Physics Department, Technion, 320003 Haifa, Israel 3Institute of Quantum Information and Matter and Department of Physics, California Institute of Technology, Pasadena, California 91125, USA (Received 13 August 2016; revised m...
متن کاملElectromagnetic response of Weyl semimetals.
It has been suggested recently, based on subtle field-theoretical considerations, that the electromagnetic response of Weyl semimetals and the closely related Weyl insulators can be characterized by an axion term θE·B with space and time dependent axion angle θ(r,t). Here we construct a minimal lattice model of the Weyl medium and study its electromagnetic response by a combination of analytica...
متن کاملTowards three-dimensional Weyl-surface semimetals in graphene networks.
Graphene as a two-dimensional topological semimetal has attracted much attention for its outstanding properties. In contrast, three-dimensional (3D) topological semimetals of carbon are still rare. Searching for such materials with salient physics has become a new direction in carbon research. Here, using first-principles calculations and tight-binding modeling, we propose a new class of Weyl s...
متن کاملCharge transport in Weyl semimetals.
We study transport in Weyl semimetals with N isotropic Weyl nodes in the presence of Coulomb interactions or disorder at temperature T. In the interacting clean limit, we determine the conductivity σ(ω,T) by solving a quantum Boltzmann equation within a "leading log" approximation and find it to be proportional to T, up to logarithmic factors arising from the flow of couplings. In the nonintera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2021
ISSN: ['1098-0121', '1550-235X', '1538-4489']
DOI: https://doi.org/10.1103/physrevb.104.155103